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Instruction Set Architecture (ISA) for MAHA 

1 Overview 

1.1 General Features 
MAHA (Memory-Array centric Hardware Accelerator) is a fabric to utilize the abundant, high-

speed cache memory already available on modern processors as a reconfigurable fabric for 

hardware acceleration of common algorithmic tasks (e.g. security and signal processing 

applications).  The memory is partitioned into several MLBs (Memory Logic Blocks) each one 

acting as a small temporal-spatial computing element.  Unlike many traditional hardware 

accelerators (e.g. FPGA), MBC (Memory Based Computing) is an instruction based framework 

that reutilizes hardware resources over multiple clock cycles.  MLBs utilize a combination of 

table lookups (using the cache memory) and a custom datapath optimized for energy efficiency. 

1.2 Instruction Overview 
The MLB ISA uses a 32-bit instruction encoding and has a datapath granularity of 8-bits (most 

operations are 16-bits wide).  Op codes are represented using the leading 4 bits of the 

instruction and an additional control field is utilized in specific operations for added flexibility.  

Each MLB supports 32 8-bit registers that are pair aligned.  The upper 6 registers are connected 

to the local bus and will latch bus data if a read is performed while a data is available on the 

bus.  If no bus transmission is occurring, the stored register value will be read.  Additionally, 

there are 16 “scalar” single-bit registers for very fine grained operations.  These registers are 

used only in scalar mode operations and cannot be accessed directly in vector operations.  The 

ISA supports the following types of instructions: 

• 16-bit unsigned addition and subtraction 

• 32-bit and 16-bit logical shift and rotate operations 

• 64-bit and 8-bit memory Load and Store 

• Reconfigurable datapath for fused logical operations of up to 3x16-bit variables 

• 2-way and 3-way select operations (only 2-way in initial release) 

• 2-way and 3-way branch operations (only 2-way in initial release) 

• Unconditional Jump 

• 8/12-bit input – 8/16/32-bit output table lookup operations 

• 5/8-bit input – 1-bit output table lookup operations (currently not supported) 

• 3-bit input – 1-bit output table lookup operations with the table directly encoded in the 

instruction 

• MOV instruction to transfer data between the register files and buses 

• Support for select on-demand SIMD datapath operations 

Additionally, a Processor Status Register (PSR) will be utilized to record metadata about the last 

operation processed used in determining branch and select conditions.  This will include 

whether the last operation produced: 

• PSR[3] = User Selected 

• PSR[2] = Carry Out 
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• PSR[1] = Overflow 

• PSR[0] = Zero 

1.3 Microarchitecture 
Each MLB will contain 16KB of byte-addressable memory divided into 8 blocks (4KB/block).  

Block 0 will be reserved for LUTs and additional instructions and will be optimized for read 

accesses since this block will only be written on time at configuration.  An asymmetric memory 

design can be applied to this block to reduce the read access energy at the expense of write 

energy.  The remaining 3 blocks will be utilized for data and will not be optimized for read or 

write.  Each MLB will also support VLIW of 2 with parallel memory access and/or datapath 

operations in each clock cycle.  Instructions will be primarily stored in a schedule table of 128 

entries of 64-bits each (to support VLIW 2).  SIMD operations utilize both entries in a schedule 

table row to perform 4 simultaneous operations.  Figure 1 below illustrates a block diagram of a 

sample MLB implementation. 

 

 
Figure 1: Block diagram of MLB 

1.4 Bus Structure 
In Multi-MLB systems, a sparse interconnect network is utilized to facilitate inter-MLB 

messaging.  The MBC is divided hierarchically into Clusters and Tiles.  Each Cluster contains 4 

MLBs and has an intra-Cluster bus network enabling point to point communication between all 

MLBs.  MLBs may access these buses in the same cycle as another operation through the use 

of virtual register ports.  Reading from one of these buses will latch the value into one of the 

upper 6 registers as follows (index given is modulo 4): 

• R26 – lower 8 bits from MLBi+1 
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• R27 – upper 8 bits from MLBi+1 

• R28 – lower 8 bits from MLBi+2 

• R29 – upper 8 bits from MLBi+2 

• R30 – lower 8 bits from MLBi+3 

• R31 – upper 8 bits from MLBi+3 

Sets of 4 MLB Clusters are organized into Tiles with a similar interconnection scheme.  The 

MLBs in each cluster share a single 16-bit bus that connects to the other three Clusters in a 

given tile.  The inter-Tile communications take place over a mesh connection to allow for greater 

scalability of the platform.  The overall connection scheme is shown in Figure 2. 

Cluster 0 Cluster 1

Cluster 2 Cluster 3

Tile

Cluster 0 Cluster 1

Cluster 2 Cluster 3

Tile

Cluster 0 Cluster 1

Cluster 2 Cluster 3

Tile

Cluster 0 Cluster 1

Cluster 2 Cluster 3

Tile

 

Figure 2: MAHA bus architecture 

When writing to the buses, either an 8-bit or 16-bit value can be sent.  If a 16-bit value is being 

transmitted, only 1 instruction may utilize the bus in a given cycle.  If only 8 bits are being 

written, both instructions can write to the bus in the same cycle.  This is accomplished by 

reserving the lowest 8 bits of the bus for “instruction 1” (the instruction contained in the lower 32 

bits of the schedule table) and the upper 8 bits for instruction “2”.  Care must be taken when 

compiling an application that 8-bit reads are performed by the correct instruction on the 

receiving MLBs to capture the correct 8-bit values. 
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The following diagram illustrates the input/output structure of each MLB to the buses. 

 
Figure 3: Bus I/O structure 

A sample communication between distant MLBs is illustrated below in Figure 4. 

Comm. Example
(MLB A → MLB D)

1. MOV from MLB A to MLB B
2. MOV from MLB B to inter-tile bus
3. MOV from inter-tile bus to MLB C

4. MOV from MLB C to MLB D
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Figure 4: Sample Communication 
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2 Distinction from Existing Frameworks 
MAHA has many differences from both traditional reconfigurable computing platforms and 

RISC processor architectures.  Compared to a FPGA, some distinctions include: 

• Follows a temporal-spatial computing model enabling both reuse of hardware 

resources over multiple clock cycles and partitioning of a large task over multiple 

units. 

• Sparse interconnect framework that exploits locality of mapped tasks to both 

improve routing delays and overall energy efficiency 

• Utilizes dense 2-D memory arrays very close to the computation engine to achieve 

both fast access times and to better handle data-intensive tasks 

And compared to a RISC processor some distinctions include: 

• Mimics common hardware structures such as select and fused logic as atomic 

operations 

• Instructions are not typically fetched from memory, but are instead preloaded into a 

large schedule table within the MLB controller 

• Hardware support for lookup table operations of varying sizes 

• Message routing and memory allocation is all handled statically at compile time, 

eliminating the need for hardware to dynamically perform all these tasks 

• Target applications are highly algorithmic and are therefore highly amenable to 

VLIW style architecture 

• Support for manipulation of single bits 
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3 Instruction Encoding 

3.1 Instruction Formats 

3.1.1 Register Format (R) 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Op Code Func Rd Ra 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Ra Rb Rc Cond 

3.1.2 Immediate Format (I) 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Op Code Func Rd Ra 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Ra Imm 

3.1.3 Branch Format (B) 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Op Code Func Ta 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Ta Tb Cond 

3.1.4 Scalar Format (S) 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Op Code Func Sd Sa Sb 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Sb Sc Imm 

3.1.5 SIMD Format (Q) 

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 

Op Code Rd1 Ra1 Rb1 

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 

Rb1 Rd2 Ra2 Rb2 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Rb2 Rd3 Ra3 Rb3 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Rb3 Rd4 Ra4 Rb4 
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3.2 Field Definitions 
 

Op Code: first 4 bits of all instructions specify the operation and encoding of the rest of the 

instruction 

Func: op code extension field used in select operations 

Ra/Rc/Rd: byte-wise address in register file 

Rb: byte-wise address in register file or amount of shift/rotate 

Sa/Sb/Sc/Sd: bit-wise address in the scalar register file 

Imm: 9-bit or 15-bit constant hardcoded into the instruction. 

Cond: Sets the condition for select and branch operations according to the table below.  To 

compare two numbers A and B, the branch/select operation will need to be preceded by a 

subtraction operation.  Assuming that the subtraction performed is A-B, the branch/select will 

check the comparison listed below. 

 

Cond 

Value[2:0] 

000 001 010 011 100 101 110 111 

Comparison A == B A <> B A > B A < B A >= B A <= B N/A N/A 

Cond1 P[0] !P[0] P[2] !P[2] P[0] || 

P[2] 

P[0] || 

!P[2] 

P[3] !P[3] 

Cond2 0 0 0 0 0 0 0 0 

 

To accomplish comparison operations, the branch and select instructions must be preceded 

with an arithmetic operation to achieve the comparison. 

Ta/Tb: immediate values representing target destinations in memory 

Op1/Op2/Op3: Set the logical operations in the reconfigurable datapath (see appendix A for 

more details on the functional decomposition) 

3.3 Operation Notation 
 

RB[A] : The contents of the register at address A concatenated with the next n registers to 

produce data of width B 

MB[A]:  The contents of memory at address A.  If B is 8, the operation is a byte access and only 

the byte at address A is returned.  If B is 64, A must be a word-aligned address (multiple of 4), 

and the entire 64-bit row will be returned 

SB[A]:  If B=1, this represents the contents of the scalar register at bit-wise address A, if B=8, 

this represents the contents of the byte at byte-wise address A. 

X[B:A]: selects bits A to B from variable X 

B[X]: The contents of the inter-Cluster and inter-Tile buses. 

>>: Shift Left 

<<: Shift Right 

>>^: Rotate Left 
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^<<: Rotate Right  

PC:  Program counter register 

ST[A]: Entry at the ath position in the schedule table 

3.4 Instruction Functionality 

3.4.1 Wait (WAIT) 

3.4.1.1 Field Usage 
 

Format: I 

Op Code: 0000 

Func[2:1]: Mode select 

11: end of execution 

  10: wait for event 

  01: delay (register value) 

  00: delay (immediate value) 

Imm: Specifies the length of delay (func 00), or the event to wait on (func 10) per Table 1 

3.4.1.2 Assembly Syntax 
WAIT Func, Rd, Ra, Imm 

3.4.1.3 Operation Performed 
If (!waiting) begin 

 waiting = 1 

 if(func[2:1] == 2’b01) 

  R8[Rd] = R8[Ra] 

 else if(func[2:1] == 2’b00) 

   R8[Rd] = Imm[7:0] 

end 

case(Func[2:1]) 

 10: if (event) begin 

  PC = PC + 1 

  waiting = 0 

0X: begin 

 If (R8[Rd] == 8’b0) 

  PC = PC + 1 

  waiting = 0 

 end else 

  R8[Rd] = R8[Rd] - 1 

end 

endcase 
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3.4.1.4 Notes 

• WAIT operations do not affect the contents of the PSR at all 

• Doing WAIT 000, 0, 0, 0 is equivalent to the NOP/NOOP instruction in most ISAs 

• If 2 WAIT commands are issued at once, whichever resolves first will resume execution 

• Use of the End of Execution function code (11) will cause the MLB to terminate 

operation until some external controller wakes it up again.  

• See Appendix B for additional comments on use of dynamic scheduling in the MAHA 

fabric and for a complete listing of possible events 

 

3.4.2 Add/Subtract (ADD) 

3.4.2.1 Field Usage 
 

Format: R 

Op Code: 0001 

Func[2]: If 1, carry in comes from carry out bit stored in PSR, otherwise, carry in is 0 for 

addition and 1 for subtraction 

Func[1]: If 1 operation is subtract, if 0 operation is add  

Func[0]: If 1, outputs to local bus as well as writing to register 

Cond[2]: if 1 write carry out back to register file to prevent overflow 

Cond[1]: if 1 Rb is 16 bits wide, if 0 is 8 bits wide 

Cond[0]: if 1 Ra is 16 bits wide, if 0 is 8 bits wide 

3.4.2.2 Assembly Syntax 
ADD {Func, Cond[1:0]} Rd, Ra, Rb 

3.4.2.3 Operation Performed 
R8/16/24[Rd] = R8/16[Ra] ± R8/16[Rb] 

PC = PC + 1 

3.4.2.4 Notes 
The width of Rd is selected as the max{size(Ra), size(Rb)} and is given an extra 8 bits if cond[2] 

is asserted to prevent overflow  
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3.4.3 Add/Subtract Immediate (ADDI) 

3.4.3.1 Field Usage 
 

Format: I 

Op Code: 0010 

Func[2]: If 1, carry in comes from carry out bit stored in PSR, otherwise, carry in is 0 for 

addition and 1 for subtraction 

Func[1]: If 1 operation is subtract, if 0 operation is add  

Func[0]: If 1, outputs to local bus as well as writing to register 

3.4.3.2 Assembly Syntax 

ADDI Func, Rd, Ra, Imm 

3.4.3.3 Operation Performed 
R16[Rd] = R16[Ra] ± Imm 

PC = PC + 1 

 

3.4.4 Shift/Rotate (SHF) 

3.4.4.1 Field Usage 
 

Format: R 

Op Code: 0011 

Func[2]: 1 for shift/rotate of 32 bits, 0 for 16 bits 

Func[1]: 1 for rotate, 0 for shift 

Func[0]: 1 for shift/rotate right, 0 for shift/rotate left 

3.4.4.2 Assembly Syntax 
SHF Func, Rd, Ra, Rb 

3.4.4.3 Function Performed 
 

R16/32[Rd] = R16/32[Ra] (>>/<</^>>/^<<) Rb 

PC = PC + 1 
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3.4.5 Logical Operation (LOG) 

3.4.5.1 Field Usage 
 

Format: R 

Op Code: 0100 

Func[2:1]:  11: bitwise and 

  10: bitwise or 

  01: bitwise xor 

  00: bitwise not 

Func[0]: If 1, outputs to local bus as well as writing to register  

Cond[0]: 1 for 16-bit operation, 0 for 8-bit operation 

3.4.5.2 Assembly Syntax 
LOG {Func, Cond[0]}, Rd, Ra, Rb 

3.4.5.3 Function Performed 
 

case(Func[2:1]) 

 11: R8/16[Rd] = R8/16[Ra] & R8/16[Rb] 

10: R8/16[Rd] = R8/16[Ra] | R8/16[Rb] 

01: R8/16[Rd] = R8/16[Ra] ^ R8/16[Rb] 

00: R8/16[Rd] = ~R8/16[Ra] 

endcase 

PC = PC + 1 

3.4.6 Lookup Table (LUT) 

3.4.6.1 Field Usage 
 

Format: I 

Op Code: 0101 

Func[2:1]:  11: 32-bit output 

  10: 16-bit output 

  01: 8-bit output 

  00: not used 

Func[0]: If 1, outputs to local bus as well as writing to register 

Imm[14]: 1 for 12-bit input, 0 for 8-bit inputFunction Performed 

3.4.6.2 Assembly Syntax 
LUT {Func, Imm[14]}, Rd, Imm (Ra) 
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3.4.6.3 Function Performed 

3.4.6.4  
R8/16/32[Rd] = M[R8/12[Ra] + Imm[11:0]] 

PC = PC + 1 

3.4.7 Load/Store (LS) 

3.4.7.1 Field Usage 
 

Format: I 

Op Code: 0110 

Func[2]: 1 for write, 0 for read 

Func[1]: 1 for 64-bit output, 0 for 8-bit output 

Func[0]: Reserved for possible load instruction command 

3.4.7.2 Assembly Syntax 
LS Func, Rd, Imm (Ra) 

3.4.7.3 Function Performed 
If (func[2]) 

 M[R8[Ra] + Imm] = R8/64[Rd] 

else 

R8/64[Rd] = M[R8[Ra] + Imm] 

PC = PC + 1 

 

3.4.8 Move (MOV) 

3.4.8.1 Field Usage 
 

Format: I 

Op Code: 0111 

Func[2]: If 1, operation is vector mode, if 1 operation is scalar mode 

 Vector Mode 

Func[1]: If 1, operation is register-register, if 0, is register-bus 

Func[0]: If 1, transfer is 16 bits, 0 is transfer of 8 bits 

 Scalar Mode 

Func[1]: If 1, operations reads from scalar register file, 0 writes to scalar register file 

Func[0]: If 1, other operand is the PSR, 0 other operand is vector register file 
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3.4.8.2 Assembly Syntax 
MOV Func, Rd, Ra, Imm 

3.4.8.3 Function Performed 
 

If (func[2]) 

 If (func[1]) 

  R8/16[Rd] = R8/16[Ra] 

 Else 

  B[Imm[12:0]]  R8/16[Ra] // as outlined in 3.4.8.4 

else 

Case (func[1:0]) 

00: S8[Rd] = R8[Ra] 

01: R8[Rd] = S8[Ra] 

10: S1[Rd] = PSR[Ra] 

11: PSR[3] = S1[Ra] 

endcase 

PC = PC + 1 

3.4.8.4 Notes 

For 16-bit transfer, Ra and Rd must be pair-aligned 

Bus addressing as follows: 

0_0000_0000_0010:  

0_0000_0000_0100: output to inter-Cluster bus 

0_0000_0000_1001: read from inter-Cluster bus 1 

0_0000_0001_0001: read from inter-Cluster bus 2 

0_0000_0010_0001: read from inter-Cluster bus 3 

0_0000_0100_0000: output to North inter-Tile bus (gMLB only) 

0_0000_1000_0000: output to East inter-Tile bus (gMLB only) 

0_0001_0000_0000: output to South inter-Tile bus (gMLB only) 

0_0010_0000_0000: output to West inter-Tile bus (gMLB only) 

0_0000_0100_0001: read from North inter-Tile bus (gMLB only) 

0_0000_1000_0001: read from East inter-Tile bus (gMLB only) 

0_0001_0000_0001: read from South inter-Tile bus (gMLB only) 

0_0010_0000_0001: read from West inter-Tile bus (gMLB only) 
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3.4.9 Select (SEL) 

3.4.9.1 Field Usage 
 

Format: R 

Op Code: 1000 

Func[2]: 1 for 3-way select, 0 for 2-way (cond2 fixed to 0 and Rb ignored) 

Func[1]: 1 if operands are 16 bit, 0 if 8 bit 

Func[0]: 1 to also output selected value to the local bus  

3.4.9.2 Assembly Syntax 
SEL Func, Rd, Ra, Rb, Rc, Cond 

3.4.9.3 Function Performed 
 

if (cond1) 

 R8/16[Rd] = R8/16[Ra] 

else if (cond2) 

 R8/16[Rd] = R8/16[Rb] 

else  

 R8/16[Rd] = R8/16[Rc] 

PC = PC + 1 

 

3.4.10 Branch (BR) 

3.4.10.1 Field Usage 
 

Format: B 

Op Code: 1001 

Func[2]: 1 for 3-way branch, 0 for 2-way (cond2 fixed to 0 and Tb ignored) 

Func[1]: 1 for unconditional jump, 0 for branch 

Func[0]: Unused 

3.4.10.2 Assembly Syntax 

BR Func, Ta, Tb, Cond 
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3.4.10.3 Function Performed 
 

If (func[1]) then 

 PC = {Ta, Tb} 

Else 

If (cond1) then 

 PC = Ta 

Else if (cond2) then 

 PC = Tb 

Else 

 PC = PC + 1 

3.4.11 Fused Logic (FUSE) 

3.4.11.1 Field Usage 
 

Format: R 

Op Code: 1010 (16-bit operation), 1011 (8-bit operation) 

{Func, Cond}: These two fields concatenated control the operation performed on the three 

operands per a Reed-Muller expansion (as described in Appendix A) 

3.4.11.2 Assembly Syntax 
FUSE8 Rd, Ra, Rb, Rc, {Func, Cond} 

FUSE16 Rd, Ra, Rb, Rc, {Func, Cond} 

3.4.11.3 Function Performed 

 

R8/16[Rd] = f(R8/16[Ra], R8/16[Rb], R8/16[Rc]) 

PC = PC + 1  

3.4.12 Scalar Lookup (LUTS) 

3.4.12.1 Field Usage 
 

Format: S 

Op Code: 1100 

Imm: Encodes a 3-input, 1-output lookup table indexed into by the values in the three source 

registers 

3.4.12.2 Assembly Syntax 
LUTS Sd, Sa, Sb, Sc, Imm  
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3.4.12.3 Function Performed 
 

S[Sd] = Imm[{S[Sa], S[Sb], S[Sc]}] 

PC = PC + 1 

3.4.13 SIMD Exclusive-Or (QXOR) 

3.4.13.1 Field Usage 
 

Format: Q 

Op Code: 1101 

3.4.13.2 Assembly Syntax 

QXOR Rd1, Ra1, Rb1, Rd2, Ra2, Rb2, Rd3, Ra3, Rb3, Rd4, Ra4, Rb4 

3.4.13.3 Function Performed 
 

R8[Rd1] = R8[Ra1] ^ R8[Rb1] 

R8[Rd2] = R8[Ra2] ^ R8[Rb2] 

R8[Rd3] = R8[Ra3] ^ R8[Rb3] 

R8[Rd4] = R8[Ra4] ^ R8[Rb4] 

PC = PC + 1 

 

3.4.14 SIMD Add (QADD) 

3.4.14.1 Field Usage 
 

Format: Q 

Op Code: 1110 

3.4.14.2 Assembly Syntax 
QADD Rd1, Ra1, Rb1, Rd2, Ra2, Rb2, Rd3, Ra3, Rb3, Rd4, Ra4, Rb4 

3.4.14.3 Function Performed 
 

R16[Rd1] = R16[Ra1] + R16[Rb1] 

R16[Rd2] = R16[Ra2] + R16[Rb2] 

R16[Rd3] = R16[Ra3] + R16[Rb3] 

R16[Rd4] = R16[Ra4] + R16[Rb4] 

PC = PC + 1 

 



Page 17 of 25 
 

3.4.15 SIMD Lookup Table (QLUT) 

3.4.15.1 Field Usage 
 

Format: Q 

Op Code: 1111 

3.4.15.2 Assembly Syntax 
QLUT Rd1, Ra1, Rb1, Rd2, Ra2, Rb2, Rd3, Ra3, Rb3, Rd4, Ra4, Rb4 

3.4.15.3 Function Performed 

 

R8[Rd1] = M[R8[Ra1] + (Rb1 << 8)] 

R8[Rd2] = M[R8[Ra2] + (Rb2 << 8)] 

R8[Rd3] = M[R8[Ra3] + (Rb3 << 8)] 

R8[Rd4] = M[R8[Ra4] + (Rb4 << 8)] 

PC = PC + 1 

 

3.4.16 Multiply (MULT) 

3.4.16.1 Field Usage 
 

Format: R 

Op Code: TBD 

Func[2]: If 1, operation is carried out over a Galois Field, if 0 is an arithmetic multiplication 

Func[1]: If 1, operands are 16 bits each with at 32-bit output, if 0 operands are 8 bits with 16-bit  

Func[0]: If 1, outputs to local bus as well as writing to register 

Cond: Only used in GF mode, specifies the primitive reducing polynomial for the field from a 

table (shown below) 

3.4.16.2 Assembly Syntax 
TBD 

3.4.16.3 Function Performed 
 

R8/16/32[Rd] = R8/16[Ra] * R8/16[Rb] 

PC = PC + 1 

Appendix A Reed-Muller Expansions 
 

Boolean functions are typically denoted by a Sum-of-Products (SOP) canonical form.  

While simple to interpret, this form may not be ideal for logic synthesis because it requires 

inverted inputs.  Another canonical representation for Boolean functions is known as the Reed-

Muller (RM) expansion. The RM expansion uses the exclusive or of product terms to represent 
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an arbitrary Boolean function.  Additionally, the RM representation of any function can be 

achieved without the use of inverted inputs. 

 To compute the RM representation of a function of n variables, 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), one of 

the variables, 𝑥𝑖, is selected.  The two cofactors of 𝑓 with respect to 𝑥𝑖 are then computed as 

follows: 

𝑓𝑥𝑖
(𝑥) = 𝑓(𝑥1, 𝑥2, … 𝑥𝑖−1, 1, 𝑥𝑖+1, … , 𝑥𝑛) 

𝑓𝑥�̅�
(𝑥) = 𝑓(𝑥1, 𝑥2, … 𝑥𝑖−1, 0, 𝑥𝑖+1, … , 𝑥𝑛) 

The original function 𝑓, can then be represented as 𝑓 = 𝑓𝑥�̅�
⊕ 𝑥𝑖

𝜕𝑓

𝜕𝑥𝑖
 where 

𝜕𝑓

𝜕𝑥𝑖
= 𝑓𝑥�̅�

⊕ 𝑓𝑥𝑖
.  This 

process can be repeated for every variable until the only operations remaining are Exclusive Or 

and And.  Note that this form, unlike a SOP representation, does not require any inverted inputs, 

and can also perform output inversion. 

 Using this expansion, all functions of two inputs can be reduced to the following form: 

𝑓00 ⊕ 𝑓01𝑥1 ⊕ 𝑓10𝑥2 ⊕ 𝑓11𝑥1𝑥2, where 𝑓00, 𝑓01, 𝑓10, 𝑓11are coefficients resulting from the 

expansion.  The Op fields contain these coefficients in as follows {𝑓11, 𝑓10, 𝑓01, 𝑓00}.  A 

comparison of the hardware required to implement a RM canonical form compared to a SOP 

canonical form for arbitrary functions of 2 inputs is given below. 

 

Gate Type SOP Required RM Required 

2-input XOR 0 3 

2-input AND 0 2 

3-input AND 4 1 

2-input OR 3 0 

Inverter 2 0 

Transistor Count 48 38 

 

As an example, consider the function 𝑓 = 𝐴𝐵̅̅ ̅̅ .  First, 𝑓is evaluated with respect to 𝐴 resulting in: 

𝑓�̅� = �̅� 

𝑓𝐴 = 0 

Substituting into the expansion, it can be shown that: 

𝑓 = �̅� ⊕ 𝐴(0 ⊕ �̅�) = �̅� ⊕ 𝐴�̅� 

Since 𝑓𝐴 evaluates to a constant, so it can be ignored from here on out.  𝑓�̅� still needs to be 

evaluated in terms of B. 

𝑓�̅��̅� = 1 

𝑓�̅�𝐵 = 0 

Plugging in to expression for 𝑓, 𝑓 = (1 ⊕ 𝐵(1 ⊕ 0)) ⊕ 𝐴(1 ⊕ 𝐵(1 ⊕ 0)).  Reducing the 

expression: 

𝑓 = 1 ⊕ 𝐵 ⊕ 𝐴 ⊕ 𝐴𝐵 

For this example then, the original function can be coded as {𝑓11, 𝑓10, 𝑓01, 𝑓00} = {1, 1, 1, 1} 
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Some Common Reed-Muller Expansions are as follows for a three input system: 

Operation {fABC, fBC, fAC, fAB, fC, fB, fA, f0} 

A & B 0001_0000 (0x10) 

A | B 0001_0110 (0x16) 

A ⊕ B 0000_0110 (0x06) 

~ A 0000_0011 (0x03) 

A & B & C 1000_0000 (0x80) 

A | B | C 1111_1110 (0xFE) 

A ⊕ B ⊕ C 0000_1110 (0x0E) 
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Appendix B Dynamic Scheduling in MAHA 
There exist some applications (give examples) where it may be desirable to pause execution for 

an extended (and potentially unknown) period due to a non-deterministic workload.  This may 

not be applicable for all domains of applications, but it is considered here in this example 

implementation of MAHA.  This is not nearly sophisticated as the dynamic scheduling 

mechanisms seen in modern superscalar, out-of-order CPUs.  The objective of MAHA dynamic 

scheduling is to allow two or more MLBs to resynchronize with each other after some form of 

conditional operation removes them from a standard lock-step mode of operation.  Some 

examples where this can be used: 

1. MLB A takes a conditional branch which shortens an execution loop relative to MLB B, and 

MLB A and B need to communicate later in the program 
2. MLB A is part of a processing pipeline which includes MLB B, but MLB A’s pipeline stage 

requires fewer steps than that of MLB B 
3. MLB A acts as a “helper” MLB to perform a specific complex operation shared by some 

number of other MLBs, and only needs to execute when this particular task is required 

To achieve this functionality, MAHA supports a WAIT instruction as outlined in Section 3.4.1.  

When a MLB executes a wait instruction, it enters a WAIT state indicated by setting a dedicated 

waiting memory element.   While this bit is set, the program counter will not increment, 

effectively stalling execution until the wait condition is satisfied.  Whenever the condition is 

resolved, the waiting bit is unset and the program counter is allowed to continue incrementing. 

There are two modes of operation in a WAIT state:  delay and wait for event.  In delay mode, an 

instruction specified register is loaded with a count of the number of cycles to pause execution 

for (can be either a value from another register or an immediate operand).  Each cycle, this 

value is decremented by 1.  When the counter hits 0, the waiting bit is cleared.  This can be 

useful in situations where there is a known offset between the execution of two (or more) MLBs.  

This can also be used to perform a “no operation” operation. 

In wait for event mode, execution stalls for an arbitrary amount of time until the specified 

condition is satisfied.  This is most applicable in the type of situation where one MLB may 

branch causing other MLBs (which may need to communicate) to be unaware exactly when a 

message is expected.  A complete listing of available events is shown below: 

Code Event Code Event 

0x0000 New data loaded to local memory 0x0040 Data on cluster bus 3 

0x0001 Data on local bus 1 0x0080 reserved 

0x0002 Data on local bus 2 0x0100 Data on N tile bus (gMLB only) 

0x0004 Data on local bus 3 0x0200 Data on E tile bus (gMLB only) 

0x0008 reserved 0x0400 Data on S tile bus (gMLB only) 

0x0010 Data on cluster bus 1 0x0800 Data on W tile bus (gMLB only) 

0x0020 Data on cluster bus 2 0x10YY Data matching YY on any local bus 

Table 1: Listing of possible events for the WAIT instruction  
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Appendix C Future Improvements Under Consideration 
• Support for a binary encoded case statements 

• Support for NxN mux style select operation 

• Support for 5x1 and 8x1 lookup operations from memory 

• Support for mixed vector and scalar operations 

• Reading from L2 bus as virtual register ports 

• Investigate support of moving single bits around in scalar register file 

• Investigate need of higher inter-cluster bandwidth 

• Add support for dynamic instruction scheduling 

• Add support for dynamic reuse of lut memory for data and vice-versa 

Appendix D Sample Programs 

D.1 C499 Verilog Benchmark 

D.1.1 Introduction 
 

This implements a single error detection-single error correction circuit.  This implementation 

considers a single MLB assuming memory is initialized as specified and all registers are 0.  The 

program executes as follows: 

1. Load values of ID (R0-R3), IC (R4), and R (R5) from memory to registers 

2. Compute partial sums of the syndromes using lookup tables for each byte of ID 

3. Use the fused datapath to XOR the partial sums together and XOR with IC and R 

4. Use lookup tables to compute the partial sums of OD based on the syndromes 

5. Use the fused datapath to XOR the partial OD sums with the ID values to get the result 

6. Store the resulting OD value to memory 

  

The high level Verilog model that this implements can be found for free at: 

http://web.eecs.umich.edu/~jhayes/iscas.restore/c499b.v 

D.1.2 Instruction Overview 
Cycle Instruction 1 Instruction 2 

1 LS 010, R0, 4096 (R25) NOP 

2 LUT 0100, R6, 0 (R0) LUT 0100, R7, 256 (R1) 

3 LUT 0100, R8, 512 (R2) LUT 0100, R9, 768 (R3) 

4 FUSE8 R10, R6, R7, R8, 0x0E FUSE8 R11, R9, R4, R5, 0x82 

5 FUSE8 R12, R10, R11, R25, 0x06 NOP 

6 LUT 1000, R14, 1024 (R12) LUT 1000, R16, 1536 (R12)  

7 FUSE16 R18, R14, R0, R25, 0x06 FUSE16 R20, R16, R2, R25, 0x06 

8 LS 011, R18, 4104 (R25) NOP 

http://web.eecs.umich.edu/~jhayes/iscas.restore/c499b.v
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D.1.3 Schedule Table Entries 
Address Instruction 1 Instruction 2 

0 0x540E_9000 0x0000_0000 

1 0x4060_0000 0x4070_8100 

2 0x4081_0200 0x4091_8300 

3 0xC0A3_1D0E 0xC8B4_90A2 

4 0xC0C5_2FA6 0x0000_0000 

5 0x44E6_0400 0x4506_0600 

6 0xB127_03A6 0xB148_0BA6 

7 0x57D9_1008 0x0000_0000 

 

D.1.4 Initial Memory Contents 
0x0000-0x00FF: Lookup table of partial sums of S for ID[31:24] 

0x0100-0x01FF: Lookup table of partial sums of S for ID[23:16] 

0x0200-0x02FF: Lookup table of partial sums of S for ID[15:8] 

0x0300-0x03FF: Lookup table of partial sums of S for ID[7:0] 

0x0400-0x05FF: Lookup table of partial sums of ID[31:16] for S 

0x0600-0x07FF: Lookup table of partial sums of ID[15:0] for S 

0x1000-0x1003: ID 

0x1004-0x1004: IC 

0x1005-0x1005: {8{R}} 

D.1.5 SIMD Optimization 
 

The above algorithm could be further optimized by making used of the SIMD style operations as 

follows to save 1 cycle. 

Cycle Instruction 1 Instruction 2 

1 LS 010, R0, 4096 (R25) NOP 

2 QLUT R6, R0, 0, R7, R1, 1, R8, R2, 2, R9, R3, 3  

3 FUSE8 R10, R6, R7, R8, 0x0E FUSE8 R11, R9, R4, R5, 0x82 

4 FUSE8 R12, R10, R11, R25, 0x06 NOP 

5 LUT 1000, R14, 1024 (R12) LUT 1000, R16, 1536 (R12)  

6 FUSE16 R18, R14, R0, R25, 0x06 FUSE16 R20, R16, R2, R25, 0x06 

7 LS 011, R18, 4104 (R25) NOP 
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D.2 AES (Advanced Encryption Standard) 

D.2.1 Introduction 
 

AES (or Rijndael as the algorithm was originally known) is commonly used encryption algorithm 

that works on 128-bit blocks of data (referred to as the “state”) and can have key sizes of 128-

bit, 192-bit, and 256-bit.  The state can be thought of as a 4x4 matrix of bytes.  The algorithm 

follows the following procedure: 

1. Key Expansion – compute the round keys from the cipher key using Rijndael’s key 

schedule 

2. Initial Round 

a. Add Round Key – perform bitwise XOR of each state byte with the corresponding 

round key byte 

3. Main Rounds – repeated 10 times for 128-bit keys, 12 times for 192-bit, and 14 times for 

256 bit 

a. Substitute Bytes – replace each byte of the state using the Rijndael S-box 

b. Shift Rows – Rotate each row cyclically 

c. Mix Columns – multiply each column by a fixed matrix to produce a new, diffused 

column of the state 

d. Add Round Key 

4. Final Round 

a. Substitute Bytes 

b. Shift Rows 

c. Add Round Key 

Some good high level overviews of the algorithm can be found at the following two links: 

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard 

http://www.cs.bc.edu/~straubin/cs381-05/blockciphers/rijndael_ingles2004.swf 

 

It is worth noting that the algorithm is not carried out in a traditional arithmetic sense, but instead 

operates in a finite field (specifically GF(28)).  The two primary differences between finite field 

arithmetic and standard arithmetic is that addition is performed as a bitwise XOR (no carry), and 

multiplication is performed modulo a reducing polynomial (Rijndael selects x8 + x4 + x3 + x + 1 

as the reducing polynomial). 

 

To implement the algorithm in the MLB architecture, the following steps will be taken.  We 

assume that the cipher key has already been expanded and the round keys are stored in 

memory as specified per section 0. 

1. Load plaintext and the first round key into MLBs 

a. Each MLB will get one column of the state and the corresponding columns of the 

round keys.  Since there are only 4 columns of the state, the entire algorithm will 

fit in 1 cluster, and thus local bus transfers are all that is required. 

2. Perform bitwise XOR of initial round key and state 

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://www.cs.bc.edu/~straubin/cs381-05/blockciphers/rijndael_ingles2004.swf
http://en.wikipedia.org/wiki/Finite_field_arithmetic
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3. Resulting bytes from the XOR will be sent to the local bus and read in by the 

corresponding MLB to perform the shift rows step 

4. Use a lookup table to perform the S-box transformation and multiplications by 2 and 3 

5. Use SIMD XOR to perform the additions required by the matrix multiplication 

6. Perform bitwise XOR of initial round key and state 

7. Repeat steps 3-6 the number of times specified for the key size used 

8. Repeat steps 3-4 and then 6 once more for the final round 

9. Write cipher text back to memory 

D.2.2 Instruction Overview 
 

This example is written assuming a 128-bit key size, but can easily be extended to any key size 

by increasing the number of rounds and adding the corresponding round keys to memory 

Cycle Instruction 1 Instruction 2 

1 LS 010, R0, 4096 (R20) NOP 

2 LOG 0100, R0, R0, R4 LOG 0110, R1, R1, R5 

3 LOG 0110, R2, R1, R6 LUT 1100, R12, 0 (R0) 

4 LUT 1100, R16, 0 (R0) LOG 0110, R3, R3, R7 

5 LUT 1100, R8, 0 (R0) LUT 1100, R20, 0 (R0) 

6 QXOR R0, R10, R13, R1, R11, R14, R2, R11, R15, R3, R9, R15 

7 QXOR R0, R0, R19, R1, R1, R17, R2, R2, R18, R3, R3, R19 

8 QXOR R0, R0, R23, R1, R1, R23, R2, R2, R21, R3, R3, R22 

9 LS 010, R8, 4104 (R20) NOP 

10 LOG 0100, R0, R0, R8 LOG 0110, R1, R1, R9 

11 LOG 0110, R2, R2, R10 LUT 1100, R12, 0 (R0) 

12 LUT 1100, R16, 0 (R0) LOG 0110, R3, R3, R11 

13 LUT 1100, R8, 0 (R0) LUT 1100, R20, 0 (R0) 

14 QXOR R0, R10, R13, R1, R11, R14, R2, R11, R15, R3, R9, R15 

15 QXOR R0, R0, R19, R1, R1, R17, R2, R2, R18, R3, R3, R19 

16 QXOR R0, R0, R23, R1, R1, R23, R2, R2, R21, R3, R3, R22 

Repeat 2-16 to perform additional rounds as required by the key size, incrementing the load 

address in (9) to get the appropriate key (4 more times for 128-bit). 

77 LOG 0100, R0, R0, R4 LOG 0110, R1, R1, R5 

78 LOG 0110, R2, R1, R6 LUT 0100, R12, 0 (R0) 

79 LUT 0100, R16, 0 (R0) LOG 0110, R3, R3, R7 

80 LUT 0100, R8, 0 (R0) LUT 0100, R20, 0 (R0) 

81 LS 010, R8, 4144 (R20) NOP 

82 LOG 0101, R0, R0, R8 LOG 0101, R2, R2, R10 

83 LS 110, R20, 4152 NOP 
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Thus encrypting one block of data will take 83 clock cycles using this approach.  192-bit 
encryption would need an additional 15 cycles (98 in total) to perform 2 additional main rounds, 
and 256-bit encryption would need an additional 15 beyond that for a total of 113 cycles. 

D.2.3 Initial Memory Contents 
0x0000-0x03FF: S-box lookup table including 2x and 3x multiples 

0x0100-0x02FF: S-box lookup table 

0x1000-0x1003: Plaintext column for this MLB 

0x1004-0x1007: Round Key 1 

0x1008-0x100F: Round Keys 10 and 11 

0x1010-0x1017: Round Keys 8 and 9 

0x1018-0x101F: Round Keys 6 and 7 

0x1020-0x1027: Round Keys 4 and 5 

0x1028-0x102F: Round Keys 2 and 3 

0x1030-0x1033: Round Key 12 

D.2.4 No SIMD Version 
 

If an implementation does not desire to use the SIMD operations for any reason, the algorithm 

can be mapped by replacing steps 6-8 and 14-16 (and all following instances of this block) with 

the following equivalent code: 

 

1 FUSE8 R0, R10, R13, R19, 0x0E FUSE8 R1, R11, R14, R17, 0x0E 

2 LOG 0100, R0, R0, R23 LOG 0100, R1, R1, R23 

3 FUSE8 R2, R11, R15, R18, 0x0E FUSE8 R3, R9, R15, R19, 0x0E 

4 LOG 0100, R2, R2, R21 LOG 0100, R3, R3, R22 

 

 


